
Introduction to ANSI/AGMA/AWEA 6006-A03, Standard for Design and Specification of Gearboxes for Wind Turbines

NREL/DOE Wind Turbine Drivetrain Research

Walt Musial

National Wind Technology Center
National Renewable Energy Laboratory
walter musial@nrel.gov

DOE/NREL Drivetrain Research

- ■Support for ANSI/AGMA/AWEA 6006-A03
- □Low Wind Speed Turbine Project
 - WindPACT Drivetrain Studies
- Dynamometer development and testing

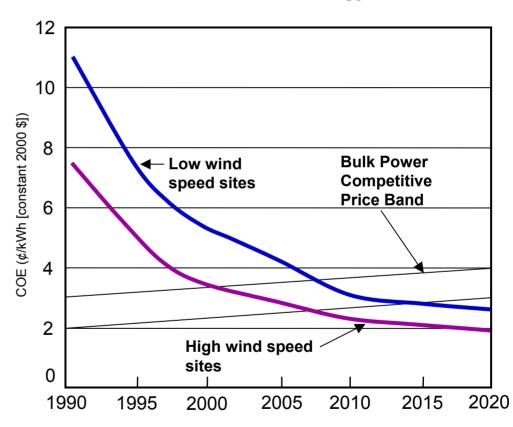
Gear Standards History

- Gearboxes were viewed as mature technology-1980'S
- Drivetrain/gearbox research was not within the scope of wind turbine R&D.
- Widespread field failures plagued the industry.
- Systems engineering problem:
 - Higher loads torque excursions, braking, transient.
 - Noise
 - Vibration
 - Service lubrication, PM, etc
- □ The need to develop guidelines recognized 1991
- □ GEARTECH was contracted by NREL to write: Errichello, R., and Muller, J. "Application Requirements for Wind Turbine Gearboxes" NREL/TP-442-7076,, September, 1994
- ☐ Became the draft text for ANSI/AGMA/AWEA 6006-A03.
- AGMA/AWEA Gearbox Committee formed in 1993
- NREL/AWEA co-sponsorship with AGMA

Low Wind Speed Technology

Current Situation

- Wind energy viable at higher wind speed sites (Class 6 – avg. 15 mph @ 10m)
- Subsidies important
- Far from load centers


New Focus

 Extend range of economically competitive sites to Class 4.

(Class 4 – avg. 13 mph @ 10m)

- 20x land area
- Diminish need for subsidy
- Closer to load centers

Wind Cost of Energy

Cost of Energy Reductions

Three (technical) ways to reduce COE:

- □ Reduce Installed Capital Cost (ICC)
- Reduce Operations and Maintenance Cost (AOE)
- □ Increase Annual Energy Production (AEP)

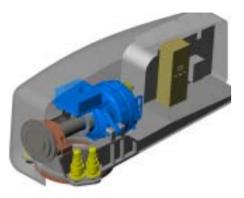
$$COE = \underbrace{(FCR \times ICC)}_{AEP} + AOE$$

Utility Scale Turbine Cost Reduction Potential

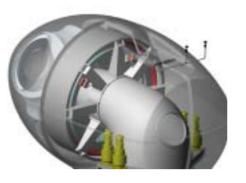
Technology Improvements

Estimated COE Improvement

•	Advanced rotors and controls – (flexible, low-solidity, higher speed, hybrid carbon-glass and advanced and innovative designs)	-15% ± 7%
•	Advanced drive train concepts - (Hybrid drive trains with low-speed PM generators and other innovative designs including reduced cost PE)	-10% ± 7%
•	New tower concepts - (taller, modular, field assembled, load feedback control)	-2% ± 5%
•	Improved availability and reduced losses - (better controls, siting and improved availability)	-5% ± 3%
•	Manufacturing improvements - (new manufacturing methods, volume production and learning effects)	-7% ± 3%
•	Region and site tailored designs (tailoring of larger 100MW wind farm turbine designs to unique sites)	-5% ± 2%


WindPACT Drive Train Studies

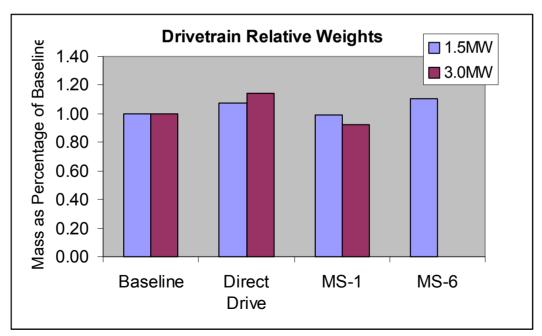
(Wind Partnerships for Advanced Component Technology)


http://www.nrel.gov/wind/windpact/

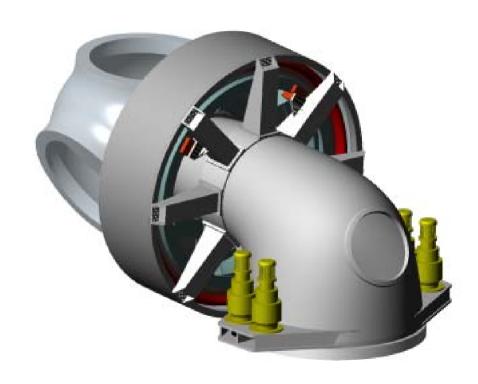
- □ Study Objectives: Identify drive train configuration(s) with the potential to reduce the cost of energy from wind turbine systems.
 - Perform preliminary design studies of several innovative drive train concepts
 - Design, fabricate, and test a prototype of the most promising concept.
- Two companies selected under competitive solicitation.
 - Global Energy Concepts
 - Northern Power Systems
- ☐ Total funding \$11.76M 100% DOE.

WindPACT - Drive Train Weight Comparison

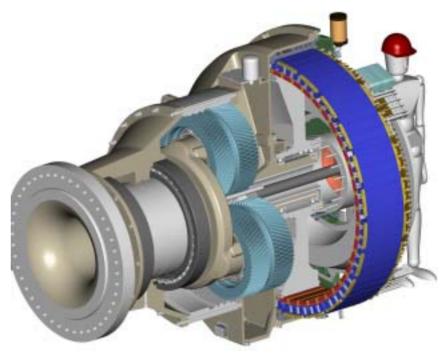
Baseline


Direct Drive- Permanent Magnet

MS-1 Single Stage Medium Speed


MS-6 –Multiple Generator

AGMA/NREL Wind Turbine Drivetrain Seminar
The Omni Interlocken Resort – Broomfield, CO – April 26—27, 2004


Northern Power Systems WindPACT Project Status

- □ 1.5 MW Direct Drive Permanent Magnet Generator
- Power Conversion Using Standard AC-DC-AC Current Link with PWM Switching
- Fabrication Underway
- Unit to Be Delivered for Testing Mid Summer 2004
- Primary Partner GD Electric Boat
- □ COE Claims: Lower O&M, higher AEP due to efficiency, reduced ICC(assumes downward magnet cost trends continue)

Global Energy Concepts WindPACT Project Status

- 1.5 MW Single Stage Gearbox with Low Speed PM Generator
- Simplified Power Conversion Using SCRs and Staggered Phasing to Improve Output Quality
- Power Correction To Take Place at Wind Farm Level
- Fabrication Underway
- Unit to Be Delivered for Testing April 2004
- Primary Partner Kaman Electrodynamics

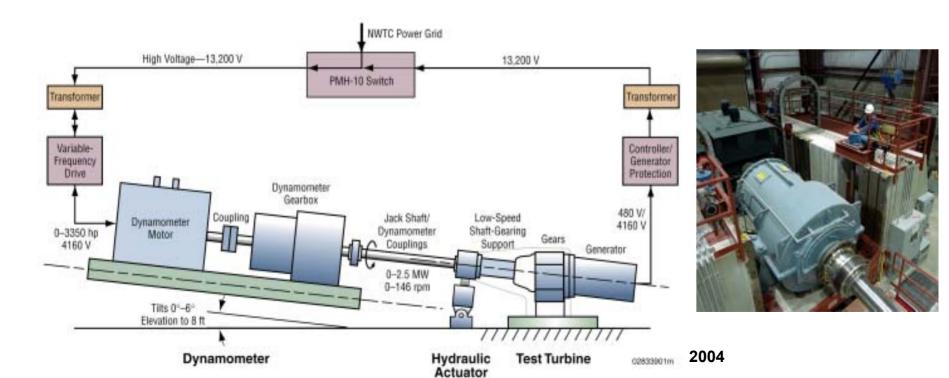
http://www.nrel.gov/publications/

Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study, November 1, 2000 - February 28, 2002

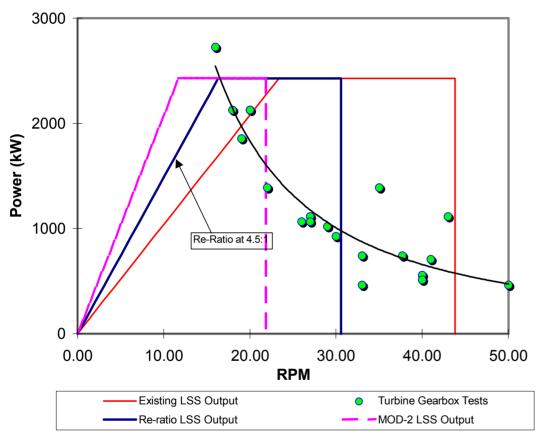
NREL's 2.5-MW Dynamometer Development

- ☐ In 1994, the AWEA/US wind industry requested a facility to conduct testing on a new generation of 500-kW+ machines.
- □ NREL began the development of a dynamometer test facility in 1997.
- ☐ The NREL 2.5-MW dynamometer was commissioned in August 1999.
- □ Purpose: To conduct laboratory tests on wind turbine drivetrains that are difficult or impossible to perform in the field.

DRIVETRAIN TESTING

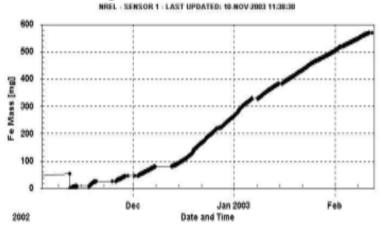

- NREL dynamometer R&D testing, Slow change-out
- □ Full system verification
- Gearbox- radial shaft loading possible
- Generator testing
- Power converter and control system.
- Ancillary equipment brakes, lubrication, nacelle temperature.

GEARBOX TESTING

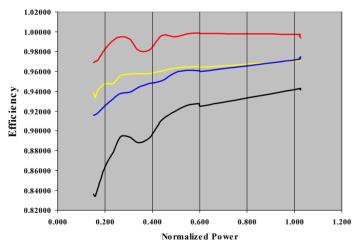

- Most testing conducted at the gearbox suppliers.
- Wear-in testing, lubrication function, contact pattern, thermal verification, and prototype endurance testing.
- □ Rapid change-out
- Validation and acceptance testing.
- New configurations difficult.

Dynamometer Background/Specifications

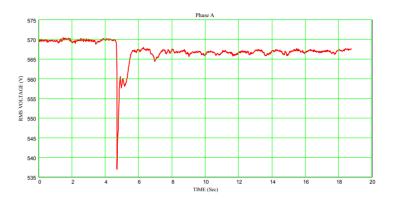
- 2.5 MW rated power capacity -power regeneration at 480/575or 4160 volts.
- ☐ Torque range 0 1.62 million N-m (9.44 million in-lb).
- Speed range from 0 2250 RPM
- 488 kN (110 kip) force capacity for dynamic shaft bending with servo-hydraulic controls.
- Fully automated SCADA torque/speed controls



Dynamometer Operating Envelope

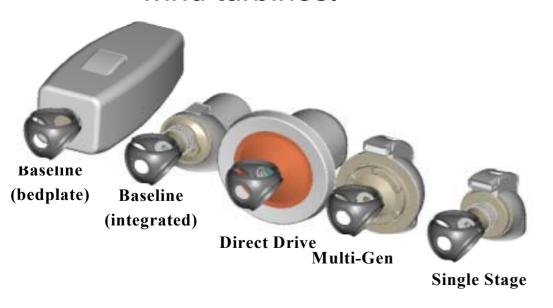


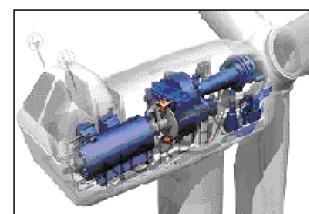
- ☐ Current Facility Limited at 9.44MM in-lbs @ 23-RPM.
- New upgrade in increase capability 13.5MM in-lbs@ 16-RPM
- New HS gear set will enable full-power tests on 2.5-MW drives.


Dynamometer Testing at NREL

Lubrication and Health Monitoring, Stress wave energy

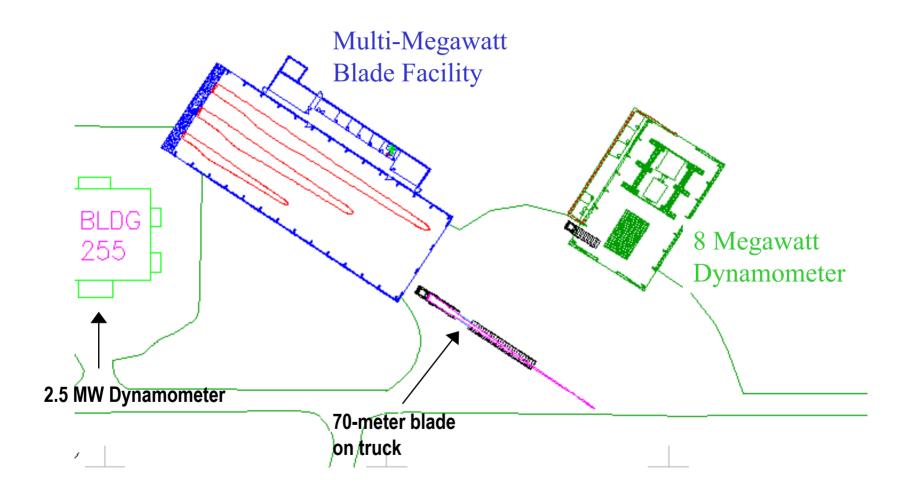
System and Component Efficiencies, System Thermal Verification


Power Quality Verification Controls and Transient Response



Design-life Equivalent Endurance Testing

Future Strategies for Drivetrains


- ☐ Invest in technologies that show promise for lower COE
 - Low Wind Speed Turbine project
 - http://www.nrel.gov/wind/about_lowspeed.html
 - Onshore and Offshore.
- Develop new large turbine test facilities
- Support the development of international standards for wind turbines.

Future Plans DOE/NREL Test Facilities 1999 **DYNAMOMETER TEST FACILITY** 1996 **FOR TURBINES INDUSTRIAL UP TO 2.0-MW USER FACILITY NO LARGE TESTING FOR** TURBINE TEST **BLADES UP TO FACILITIES EXIST 37-METERS** 1989 IN THE USA **FIRST BLADE** Wind Turbine Size **TEST FACILITY** 2006 2009 2012 **IN USA** 2500-kW 5000-kW 7000-kW **60-METER 70-METER** 45-METER **BLADES BLADES BLADES Average Commercial Turbine Sizes** 1989 1996 1999 2003 100-kW 500-kW 750-kW 1500-kW 9-METER **19-METER 24-METER** 37-METER **BLADES BLADES BLADES BLADES**

Layout of Proposed Multi-Megawatt Test Facilities

Tour of National Wind Technology Center

Current Test Program Clipper DGD-1

Clipper WINDPOWER

- Clipper Windpower DGD-1 Drive Installed March 2003.
- Unique Prototype eight-generator 1.5-MW Drivetrain Topology.
- Mechanical test phases completed.
 - Lube system verification, functional, thermal.
 - Verified smooth mechanical operation.
- Electrical system start-up problems resolved.
 - Field control system, load bank, capacitor circuit, converter software.
- New method to determine proper tooth modifications: Measured load intensity variations on HS Pinion with strain gages.
- □ Achieved endurance load, full-speed operation. 30% over rated power.

Blade Test Video

LWST Resonance Blade Fatigue Test System

- New system uses 1/3 the energy
- New system can test the full-blade length.
- Resonance system scales to large blades.
- Patent application filed by NREL national patents pending

Høvsøre Test Facility at Risø